Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK.
نویسندگان
چکیده
Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations.
منابع مشابه
Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK-/- and GLUT5-/- mice.
Elevated blood fructose concentrations constitute the basis for organ dysfunction in fructose-induced metabolic syndrome. We hypothesized that diet-induced changes in blood fructose concentrations are regulated by ketohexokinase (KHK) and the fructose transporter GLUT5. Portal and systemic fructose concentrations determined by HPLC in wild-type mice fed for 7 days 0% free fructose were <0.07 mM...
متن کاملAcute interactions between intestinal sugar and calcium transport in vitro.
Fructose consumption by Americans has increased markedly, whereas Ca(2+) intake has decreased below recommended levels. Because fructose metabolism decreases enterocyte ATP concentrations, we tested the hypothesis that luminal fructose acutely reduces active, diet-inducible Ca(2+) transport in the small intestine. We confirmed that the decrease in ATP concentrations was indeed greater in fructo...
متن کاملFructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway.
Expression of rat glucose transporter-5 (GLUT5) is tightly regulated during development. Expression and activity are low throughout the suckling and weaning stages, but perfusion of the small intestinal lumen with fructose solutions during weaning precociously enhances GLUT5 activity and expression. Little is known, however, about the signal transduction pathways involved in the substrate-induc...
متن کاملRegulation of GLUT5 gene expression in rat intestinal mucosa: regional distribution, circadian rhythm, perinatal development and effect of diabetes.
1. GLUT5 gene expression was studied in small intestine under a variety of conditions characterized by altered intestinal absorption of monosaccharides. 2. RNA-blotting studies showed that GLUT5 mRNA was abundantly expressed in rat and rabbit intestine and kidney, but it was not detected in heart or brown adipose tissue. GLUT5 mRNA levels were higher in the upper segments of the small intestine...
متن کاملDiet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine.
Metabolic complications arising from excessive fructose consumption are increasing dramatically even in young children, but little is known about ontogenetic mechanisms regulating Glut5 [glucose transporter 5; encoded by the Slc2a5 (solute carrier family 2 member 5) gene]. Glut5 expression is low postnatally and does not increase, unless luminal fructose and systemic glucocorticoids are present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 309 5 شماره
صفحات -
تاریخ انتشار 2015